TIME DELAY AND PERFORMANCE OF CPR IN SURF LIFEGUARDS
- After simulated cardiac arrest due to drowning

Andreas Claesson
RN, Paramedic, Lifeguard

ARTICLE IN PRESS

Original Contribution

Delay and performance of cardiopulmonary resuscitation in surf lifeguards after simulated cardiac arrest due to drowning

Andreas Claesson RN a,b, Tomas Karlsson b, Ann-Britt Thorén PhD c, Johan Herlitz MD d

aKungälv Ambulance Service, SE-462 40 Kungälv, Sweden
bInstitute of Medicine, Department of Molecular and Clinical Medicine/Cardiology, Sahlgrenska University Hospital, SE-413 45 Göteborg, Sweden
cSchool of Health and Caring Sciences, Linnaeus University, SE-35195 Växjö, Sweden
dInstitute of Medicine, Department of Molecular and Clinical Medicine/Cardiology, Sahlgrenska University Hospital, SE-413 45 Göteborg, Sweden

Received 7 June 2010; accepted 27 June 2010
COI

The study was supported by the Laerdal foundation of acute medicine

JOIN VENTURE

✓ University of Gothenburg,
 - The Sahlgrenska academy
✓ Swedish Lifesaving Society – SLS
 - Tylösand Surf lifesaving club
AIM

To describe time delay during surf rescue
Compare quality of cardiopulmonary resuscitation (CPR) before and after exertion in surf lifeguards.

In-water resuscitation--is it worthwhile?

Szpilman D, Soares M.
Fire Department of Rio de Janeiro-Drowning Resuscitation Center of Barra da Tijuca (CBMERJ-GMAR-GSE), Av. das Américas 3555, Bloco 2, sala 302, Rio de Janeiro RJ 22793-004, Brazil. szpilman@globo.com

Final Outcome (survival without sequels)

<table>
<thead>
<tr>
<th></th>
<th>IWR N=19</th>
<th>Non-IWR n=27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome</td>
<td>52.6%</td>
<td>7.4%, p < 0.001</td>
</tr>
</tbody>
</table>
Decay in quality of closed-chest compressions over time.

Hightower D, Thomas SH, Stone CK, Dunn K, March JA.

Department of Emergency Medicine, East Carolina University School of Medicine, Greenville, North Carolina, USA.

<table>
<thead>
<tr>
<th>Minute</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct %</td>
<td>92.9</td>
<td>67.1</td>
<td>39.2</td>
<td>31.2</td>
<td>18</td>
</tr>
</tbody>
</table>

Quality of chest compressions during 10 min of single-rescuer basic life support with different compression: ventilation ratios in a manikin model

Conrad Arnfinn Bjørshol, Eldar Søreide, Tor Harald Torsteinbe, Kristian Lexow, Odd Bjarte Nilsen, Kjetil Sunde
STUDY SUBJECTS

N = 40 Surf lifeguards
26 Men/ 14 Women

Mean age: 26.2 years
Mean weight: 74.6 kg
Mean length: 176.5 cm
CPR instructors: 60 %

All lifeguards were trained in CPR, 2005 guidelines within 2 months prior to testing
PROTOCOL

Test 1 - Rested
CPR 10 minutes (single rescuer - manikin)

Test 2 - Exerted
Rescue of 80 kg victim 100 meters from beach
+ CPR 10 minutes (single rescuer – manikin)

CONDITIONS

Buoy placed at: 100 meters
Wind speed less than: 4 m/s
Wave height less than: 0.5 meters
First IWR at: 50 meters
CPR at: On beach
Delay times (min.)

Results – (mean values)

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Men</th>
<th>Women</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=40)</td>
<td>(n=26)</td>
<td>(n=14)</td>
<td></td>
</tr>
<tr>
<td>Beach to victim</td>
<td>1.20</td>
<td>1.15</td>
<td>1.26</td>
<td>0.01</td>
</tr>
<tr>
<td>Time to IWR</td>
<td>2.25</td>
<td>2.22</td>
<td>2.31</td>
<td>0.11</td>
</tr>
<tr>
<td>Time to CPR</td>
<td>4.18</td>
<td>4.05</td>
<td>4.45</td>
<td>0.004</td>
</tr>
</tbody>
</table>

p* = Difference men and women
Quality of CPR
Compression rate / minute

(Mean ± SD)

<table>
<thead>
<tr>
<th>Time Period (min)</th>
<th>Rested Lifeguards</th>
<th>Exerted Lifeguards</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2 min</td>
<td>116.2 (±13.4)</td>
<td>117.2 (±14.3)</td>
<td></td>
</tr>
<tr>
<td>8-10 min</td>
<td>113.2 (±14.7)</td>
<td>114.1 (±16.1)</td>
<td></td>
</tr>
</tbody>
</table>

(ILCOR 2005 Guidelines = 100 / minute)
Actual compressions minute

Mean ± SD

<table>
<thead>
<tr>
<th></th>
<th>0-2 min</th>
<th>8-10 min</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rested lifeguards</td>
<td>80.0 (±8.6)</td>
<td>78.2 (±8.5)</td>
<td>0.008</td>
</tr>
<tr>
<td>Exerted lifeguards</td>
<td>81.4 (±9.4)</td>
<td>79.6 (±9.4)</td>
<td>0.047</td>
</tr>
</tbody>
</table>

(ILCOR 2005 Guidelines = preferably 80 /minute mm.)

Compression depth mm.

Mean ± SD

<table>
<thead>
<tr>
<th></th>
<th>0-2 min</th>
<th>8-10 min</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rested lifeguards</td>
<td>42.6 (±7.8)</td>
<td>40.8 (±9.3)</td>
<td>0.02</td>
</tr>
<tr>
<td>Exerted lifeguards</td>
<td>44.2 (±8.7)</td>
<td>41.5 (±9.1)</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

(ILCOR 2005 Guidelines = 38-51 mm.)
Compression depth

Chest compressions > 38mm
Other factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>N.S</td>
</tr>
<tr>
<td>Age</td>
<td>N.S</td>
</tr>
<tr>
<td>Weight</td>
<td>N.S</td>
</tr>
<tr>
<td>CPR instructor</td>
<td>N.S</td>
</tr>
</tbody>
</table>

Discussion

Manikin study, bias compared to real life scenarios?

Confounders for evaluating CPR quality?
Motivation, muscular memory, teaching techniques etc.

ILCOR Guidelines 2010 = Depth: 50 - 60 mm. Rate: 100 – 120 /minute

Is CPR tiring? Not for all!
Conclusion

✓ It took twice the time to bring the victim back to shore as reaching him, men were significantly faster.

✓ CPR quality was identical before and after rescue – 62% correct

✓ The exertion of a surf rescue, did not affect the quality of CPR

✓ Model for lifesaving organisations worldwide to regularly evaluate quality of CPR.
TIME DELAY AND PERFORMANCE OF CPR IN SURF LIFEGUARDS
- After simulated cardiac arrest due to drowning

andreas.claesson@telia.com