Mouth-to-mouth ventilation reduces interruptions in chest compressions during lifeguard CPR: A randomized manikin study

MD, PhD Bo Lofgren¹,²,³, MB Kasper Adelborg⁴, MB Christian Dalgas²,³, MSc Carsten Jørgensen⁵ and MD Rozh Husain Al-Mashhad¹,²,³

Research Center for Emergency Medicine, Aarhus University Hospital; Aarhus, Denmark¹, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark², Department of Cardiology, Aarhus University Hospital, Skejby, Aarhus, Denmark³, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark⁴, Department of Economics, Politics and Public Administration, Aalborg University, Aalborg, Denmark⁵

Introduction
The quality of cardiopulmonary resuscitation (CPR) is a crucial determinant of the outcome following cardiac arrest. Interruptions in chest compressions are detrimental. The aim of this study was to compare the effect of mouth-to-mouth ventilation (MMV), mouth-to-pocket-mask ventilation (MPV) and bag-mask ventilation (BMV) on CPR quality.

Materials and methods
Surf lifeguards in active service were included in the study. Each surf lifeguard was randomized to perform three sessions of single rescuer CPR using each of the three ventilation methods (MMV, MPV and BMV) separated by five minutes of rest. Data were obtained from a resuscitation manikin and video recordings.

Results
In total 50 surf lifeguards were included (35 males, 15 female, mean age 25.4 years). Interruptions in chest compressions were significantly reduced by MMV (8.6 +/- 1.6 sec) when compared to MPV (10.7 +/- 3.2 sec, p<0.001) and BMV (12.4 +/- 3.6 sec, p<0.001). No significant differences were observed in chest compression depth and rate. Significantly more effective ventilations (visible chest rise) were delivered using MMV (93%) when compared to BMV (59%, p<0.0001) while no difference were observed when compared to MPV (80%, p=0.14). Tidal volumes were significantly lower following BMV (0.42 +/- 0.16 L, p <0.001 for both) compared to MMV (0.65 +/- 0.21 L) and MPV (0.62 +/- 0.26 L), while no difference were observed when comparing MMV and MPV.

Conclusion
MMV reduces interruptions in chest compressions during lifeguard CPR. Furthermore, MMV seems to results in a higher proportion of effective ventilations. Our results suggest that CPR quality is improved using MMV compared to MPV and BMV.

Acknowledgement
The authors thank John Mogensen, Chief lifeguard for the North Zealand Surf Lifeguard Service, Steve Martinussen, Chief for the Surf Lifeguard Service at Amager Strand Park and Svanemolle Beach and all the surf lifeguards participating in the study.

Corresponding Author
Dr Bo Lofgren MD, PhD
Aarhus University Hospital, Skejby
Department of Cardiology
Brendstrupgaardsvej 100
Aarhus N DK Denmark 8200
Email: bo.loefgren@ki.au.dk
Telephone: +45 8949 9072